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Abstract
It is shown theoretically that by the use of two radio-frequency fields of the
same resonance frequency but with the different phases and directions the
degeneracy of the energy spectrum of a spin system with I = 3/2 is removed.
This leads to four non-degenerate spin states which can be used as a platform
for quantum computing. The feasibility of quantum computing based on a
pure (without DC magnetic fields) nuclear quadrupole resonance technique is
investigated in detail. Various quantum logic gates can be constructed by using
different excitation techniques allowing different manipulations with the spin
system states. Three realizations of quantum logic gates are considered: the
application of an additional magnetic field with the resonance frequency, the
amplitude modulation of one of the applied RF fields by the resonance frequency
field, and the level-crossing method. It is shown that the probabilities of the
resonance transitions depend on the method of excitation and on the direction
of the excitation field. Feasibility of quantum computing is demonstrated with
the examples of constructing a controlled-NOT logic gate using the resonance
excitation technique and SWAP and NOT2 logic gates using the level-crossing
method.

1. Introduction

Quantum computing is a new fast developing field that combines together ideas from
information theory, computer science, and quantum physics [1]. In recent years, the nuclear
magnetic resonance (NMR) technique has received considerable attention as a platform for
the practical implementation of a quantum computer (QC) [2–4]. The basic idea for an NMR
QC is that two stationary states of spin 1

2 in an applied magnetic field represent naturally one
information quantum bit (qubit).

In contrast to a classical bit, which can be in one of two states, 0 or 1, a qubit can exist
in a superposition of two basic quantum states |0〉 and |1〉 allowing the QC to perform certain
computations more quickly than classical computers do [1–4]. To produce two-qubit gates in a
physical system of the same type of nuclei as the spin 1

2 , some interaction between nuclear spins
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is required. This interaction forms a strong-coupling network. The strength of the network
coupling determines the gate time of the QC [5]. For example, all possible pulse sequences
for realization of two-qubit gates in NMR have one feature in common: the evolution time
between pulses is of the order of 1

2J , where J is the spin–spin coupling constant. So, the
computation time is the inverse of 2J [4]. This constant is in range of 10–200 Hz. Thus the
computation time for the two-qubit gates can be quite long: from 100 to 2.5 ms. For example,
a C-NOT NMR gate based on cytosine takes about 70 ms to operate [6]. In order to overcome
this weak point, using nuclei with an electric quadrupole moment and the nuclear quadrupole
resonance (NQR) technique was proposed [7].

It is known that the energy levels of a nucleus with a half-integer spin I > 1/2 having
an electric quadrupole moment Q are degenerate in an electric field gradient (EFG) according
to Kramers’ rule [8]. For example, there are two doubly degenerate energy levels for the spin
3
2 [8] (h̄ = 1):

ε±3/2 = +
eQqZ Z

4
ξ, ε±1/2 = −eQqZ Z

4
ξ (1)

where eqzz = ∂2V
∂z2 is the Z Z -component of the EFG; V is the electric potential, ξ =

(1 + η2/3)1/2, and η is the asymmetry parameter of the EFG.
In an applied external DC magnetic field, the degeneracy of the energy levels is removed

and four coupled energy levels are obtained for a nucleus [8]. Therefore, any interaction
between individual spins of the spatially separated particles is not required to form a two-qubit
system [7].

In order to form a non-degenerate energy spectrum, both techniques, NMR and NQR,
use high external magnetic fields (1–9 T) and internal interactions: the spin–spin interaction
for NMR [2–4] and the interaction of the quadrupole moment with the EFG for NQR [7, 9–
11]. Both of these interactions are determined by intrinsic properties of the crystal or liquid
crystalline matrix used. The splitting of the energy levels is determined by the magnetic field
value.

In the present paper we show that a two-qubit system can be formed using quadrupole
nuclei with the spin 3

2 , influenced by two radio-frequency (RF) fields without an external DC
magnetic field.

2. Energy spectrum

Let us consider a system of nuclear spins with I = 3/2 in zero external magnetic field under
the action of two RF fields with the same frequency ω close to the resonance frequency
ω0 = ε±3/2 − ε±1/2 of the spins but with different amplitudes Hk, directions �Lk , and phases
αk :

�Hk(t) = Hk �Lk cos(ωt + αk), (2)

where k = 1 and 2 relate to the first and second RF fields; the �Lk are given in
the principal-axis frame of the EFG by polar (θk) and azimuthal (ϕk) angles as �Lk =
{sin θk cos ϕk; sin θk sin ϕk; cos θk}.

We assume that the spin–spin and spin–lattice interactions are small relative to the
quadrupole interaction. In this case the system can be described by the Hamiltonian

H(t) = HQ + H1(t), (3)

where

HQ =
∑

i

eQqzz

4I (2I − 1)

[
3I i2

z − �I i2 +
η

2
(I i2

+ + I i2
− )

]
(4)
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represents the interaction of the spin system with the EFG; �I i = {I i
x , I i

y, I i
z } is the operator of

spin, I i± = I i
x ± iI i

y , i = √−1. The summation is over all of the nuclei of the system. H1(t)
gives the action of two applied RF fields on the spin system:

H1(t) =
2∑

k=1

∑
i

ω1
k
�Lk · �I i cos(ωt + αk), (5)

where ω1
k = γ Hk; γ is the gyromagnetic nuclear ratio.

Operations with all the spin operators will be performed in the basis in which the
Hamiltonian HQ has a diagonal form. Using an operator basis emn = ∑

i ei
mn , defined by their

matrix elements in the HQ-representation 〈m|ei
m′n′ |n〉 = δmm′δnn′ and the commutation relation

[ei
mn, e j

m′n′] = δi j(δnm′ei
mn′ − δn′mei

m′n) with m, n = 3/2, 1/2,−1/2 ≡ 1/2,−3/2 ≡ 3/2, the
Hamiltonian (3) can be rewritten as

H(t) = 1
2ω0(e3/2,3/2 − e1/2,1/2 − e1/2,1/2 + e3/2,3/2) +

2∑
k=1

ω1
k cos(ωt + αk)

∑
m,n

( �Lk · �I )mnemn,

(6)

where∑
m,n

( �Lk · �I )mnemn = A(+)
k (e3/2,1/2 + e1/2,3/2) + A(−)

k (e3/2,1/2 + e1/2,3/2)

− A(3)
k (e3/2,1/2 + e1/2,3/2 − e1/2,3/2 − e3/2,1/2)

+ T(−)ke3/2,3/2 + T ∗
(−)ke3/2,3/2 + T(+)ke1/2,1/2 + T ∗

(+)ke1/2,1/2

+ R(+)k(e3/2,3/2 − e3/2,3/2) − R(−)k(e1/2,1/2 − e1/2,1/2) (7)

and

T(±)k = 1
2 [sin θk ∓ 31/2e±iϕk sin β + e±iϕk (1 ± cos β)];

R(±)k = 1

2
cos θk

(
1 ± cos

β

2

)
;

A(±)
k = A(1)

k ± iA(2)
k ;

A(1)

k = 1
2 sin θk cos ϕk(31/2 cos β + sin β);

A(2)
k = 1

2 sin θk sin ϕk(31/2 cos β − sin β);
A(3)

k = cos θk sin 2β; tan β = η(31/2ξ)−1.

In the vicinity of the resonance, we use the approach developed in [12, 13], which is based
on the unitary transformation defined by the operator U(t) = exp(iDt) with

D = 1
4ω(e3/2,3/2 − e1/2,1/2 − e1/2,1/2 + e3/2,3/2). (8)

This transformation results in a new representation with the Hamiltonian H̃(t) =
U(t)H(t)U−1(t). Using the transformation rule for the operator basis

ẽmn = ẽ∗
nm = emneiωmn t , (9)

where ωmn = 0 for m = n,−n and ωmn = ω otherwise, we find the Hamiltonian H̃(t):

H̃(t) = �

2
(e3/2,3/2 − e1/2,1/2 − e1/2,1/2 + e3/2,3/2) +

+
2∑

k=1

ω1
k [A(+)

k (e3/2,1/2eiωt + e1/2,3/2e−iωt ) + A(−)
k (e3/2,1/2eiωt + e1/2,3/2e−iωt )
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− A(3)

k (e3/2,1/2eiωt + e1/2,3/2e−iωt − e1/2,3/2e−iωt − e3/2,1/2eiωt )

+ T(−)ke3/2,3/2 + T ∗
(−)ke3/2,3/2 + T(+)ke1/2,1/2 + T ∗

(+)ke1/2,1/2

+ R(+)k(e3/2,3/2 − e3/2,3/2) − R(−)k(e1/2,1/2 − e1/2,1/2)] cos(ωt + αk), (10)

where � = ω0 − ω. The Hamiltonian (10) contains time-independent terms and also terms
oscillating with frequencies ω and 2ω. Under real experimental conditions, � 	 ω and
ω1

k 	 ω. Therefore, the role of the rapidly oscillating terms in the evolution of the spin
states is negligible and they can be discarded [8]. In this approximation, the effective time-
independent Hamiltonian of the system takes the following form:

He f f = �

2
(e3/2,3/2 − e1/2,1/2 − e1/2,1/2 + e3/2,3/2)

+
2∑

k=1

ω1
k

2
[A(+)

k (e3/2,1/2e−iαk + e1/2,3/2eiαk ) + A(−)
k (e3/2,1/2e−iαk + e1/2,3/2eiαk )

− A(3)

k (e3/2,1/2e−iαk + e1/2,3/2eiαk − e1/2,3/2eiαk − e3/2,1/2e−iαk )]. (11)

Diagonalization of the effective Hamiltonian gives the following energy levels of the spin
system in the RF field:

E3 = −E0 = [B1 + B2]1/2,

E2 = −E1 = [B1 − B2]1/2,
(12)

where

B1 = ω1
1ω

1
2

[
1

4

�2

ω1
1ω

1
2

+
ω1

1

ω1
2

�A2
1 +

ω1
2

ω1
1

�A2
2 + 2( �A1 · �A2) cos(α1 − α2)

]
, (13)

B2 = 2ω1
1ω

1
2| �A1 × �A2| sin(α1 − α2), (14)

�Ak = {A(1)

k , A(2)

k , A(3)

k }. (15)

Equations (12)–(15) show that the degeneracy of the energy spectrum is removed,without a DC
magnetic field, just by application of two RF fields with different phases and directions. The
energy levels Es correspond to the eigenstates of the quantum system described by the effective
Hamiltonian Hef f |ζs〉 = Es |ζs〉, where the |ζs〉 are the eigenfunctions with s = 0, 1, 2, 3.

According to equations (12)–(15), the splitting between energy levels depends on the
phase shift α1 − α2 and mutual orientations of the RF fields. By variation of these parameters
we can change the values of the resonance frequencies �ss ′ = Es − Es ′ .

Let us consider in more detail a special case where the EFG has axial symmetry, η = 0,
and both RF fields have equal amplitudes ω1

1 = ω1
2 = ω1 and polar angles of the direction

vectors θ1 = θ2 = π/2. In this case equations (13) and (14) reduce to

B1 = (ω1)2

{
1

4

(
�

ω1

)2

+
3

2
[1 + cos(ϕ1 − ϕ2) cos(α1 − α2)]

}
, (16)

B2 = 3
2 (ω1)2 sin(ϕ1 − ϕ2) sin(α1 − α2). (17)

The dependence of the energy levels E0,1,2,3 on the difference of phases α1 −α2 according
to equations (16) and (17) for ϕ1 − ϕ2 = π/2 and 1

6 ( �
ω1 )

2 = 0.1 is shown in figure 1. The
energy level dependence on the relative orientation of the RF fields, ϕ1 − ϕ2, has the same
character. By variation of the difference α1 − α2 we can control the splitting between the
energy levels of the spin system. Figure 1 illustrates that there are level-crossing points at
α1 − α2 = πp, p = 0, 1, 2 . . .. In the case of the exact resonance � = 0, the level-crossing
points are achieved at the following conditions: E0 = E1 and E2 = E3 at α1 − α2 = πp;
E0 = E3 at α1 − α2 = 1

2 π + π(2 p + 1); and E1 = E2 at α1 − α2 = 1
2π + 2πp; p = 0, 1, 2 . . ..
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Figure 1. Energy levels, calculated as a function of the difference of phases α1 − α2.

3. Resonance transitions

The probabilities of the resonance transitions s → s′, Pss ′ ∼ 〈s|�l · �I |s′〉2 depend on the method
of excitation and the direction �l of the excitation field. We will consider two methods of
excitation: the application of an additional magnetic field with the resonance frequency �ss ′

and the amplitude modulation of one of the applied RF fields.

3.1. Additional magnetic field

One commonly used excitation technique [14–17] consists in the application of an additional
magnetic field �h = h�l cos �t with amplitude h and frequency � close to �ss ′ = Es − Es ′ .
This frequency � is estimated from the experimental data of [14–17] to be in the range 10–
40 kHz. The sensitivity in this method is determined by the large frequency, which is 10 MHz.
These are the so-called ‘experiments in the rotating frame’ [18]. The vector �l is written in the
principal-axis frame of the EFG: �l = {sin θ3 cos ϕ3; sin θ3 sin ϕ3; cos θ3}. In the case of θ3 = 0,
the probabilities P03 = 1

4 (1 − �2

4E2
0
), P12 = 1

4 (1 − �2

4E2
1
), and P23 = P02 = P01 = P13 = 0.

In the case of θ3 = π/2, we have another situation. The probabilities of the transitions
2 → 3, 0 → 2, 0 → 1, and 1 → 3 are non-zero and determined by

P10 = (E0 + �
2 )(E1 + �

2 )

4E0 E1
, P02 = (E0 − �

2 )(E1 + �
2 )

4E0 E1
,

P13 = (E0 + �
2 )(E1 − �

2 )

4E0 E1
, P23 = (E0 − �

2 )(E1 − �
2 )

4E0 E1
.

(18)

To determine the probabilities P03 and P12 we use the same method of averaging of rapidly
oscillating terms [8]. Both probabilities become proportional to (

γ h
ω0 )2 	 1.

Note that by changing the difference of the phases of the RF fields α1 −α2, one can control
the probabilities of different transitions. As follows from (18), in the case of

ϕ1 − ϕ2 = α1 − α2 = π/2 (19)



8720 G B Furman et al

the transition 0 → 2 is forbidden, and the transitions 1 → 3 and 2 → 3 can be excited with
the probabilities P13 = E0−E1

2E0
and P23 = E1+E0

2E0
, respectively.

In the case of

ϕ1 − ϕ2 = −(α1 − α2) = π/2 (20)

the transition 1 → 3 is forbidden, and the transitions 0 → 2 and 2 → 3 can be excited with
the probabilities P02 = E1−E0

2E1
and P23 = E1+E0

2E1
, respectively.

In both of these cases the transition 0 → 1 is forbidden.
We emphasize that the transitions 0 → 2 and 1 → 3 have equal resonance frequencies,

but they can be excited independently, because of the different excitation conditions.

3.2. Amplitude modulation method

Another technique of excitation is based on the amplitude modulation of an RF field [18]. The
amplitude modulation of one of the applied RF fields by the low frequency �ss ′ (for example,
�H2(t) = ω1

γ
�L2 cos(ωt + α2) cos �ss ′ t) allows us to operate without an additional coil. The

resonance transitions 0 → 3 and 1 → 2 can be realized with the probabilities

P03 = 9

16E2
0

{(
�

2
+ E0

)2

+ 12(ω1)2 cos2

[
(ϕ1 − ϕ2) + (α1 − α2)

2

]

× [cos(ϕ1 + ϕ2 + α1 + α2) − sin(ϕ1 + ϕ2 + α1 + α2)]

}
(21)

and

P12 = 9

16E2
1

{(
�

2
+ E1

)2

+ 12(ω1)2 cos2

[
(ϕ1 − ϕ2) − (α1 − α2)

2

]

× [cos(ϕ1 + ϕ2 − α1 − α2) − sin(ϕ1 + ϕ2 − α1 − α2)]

}
. (22)

Averaging of rapidly oscillating terms gives for the probabilities of the transitions 2 → 3,
0 → 2, 1 → 3, and 0 → 1: P23 ∼ P02 ∼ P13 ∼ P10 ∼ (ω1/ω0)2 	 1.

3.3. Level-crossing method

Note that there is another interesting method for realization of s → s′ transitions between
states, which is similar to the amplitude modulation technique. Let us show how this can be
realized. For this purpose we shall consider a nuclear quadrupole spin system under the action
of two RF fields (5) with different frequencies, ω1 = ω2 + δ, and with both frequencies ω1

and ω2 close to the resonance one, ω0. After performing the unitary transformation (8) with
ω = ω1 and neglecting terms describing fast oscillations with frequencies ω and 2ω [8], the
spin system’s Hamiltonian can be written in the form

He(t) = He f f + H1e(t) (23)

where He f f has a time-independent part represented by equation (11) and a time-dependent
part:

H1e(t) = ω1
1[A(+)

1 (e3/2,1/2e−iδt + e1/2,3/2eiδt ) + A(−)

k (e3/2,1/2e−iδt + e1/2,3/2eiδt )

− A(3)
k (e3/2,1/2e−iδt + e1/2,3/2eiδt − e1/2,3/2eiδt − e3/2,1/2e−iδt )]. (24)

For δ close to �ss ′ , this time-dependent interaction of the spin system can be used to excite the
transitions between eigenstates |ζs〉 of the Hamiltonian He f f .



Two qubits in pure NQR 8721

4. Feasibility of quantum computing

Let us consider the set of the eigenstates obtained for the spin system as a platform for quantum
computing. In quantum informatics, a calculation is represented as a sequence of unitary
transformations (logic gates) of the states of a quantum system. The basic universal set of
quantum logic gates consists of the one-qubit gates and one or more non-trivial two-qubit
gates [1–3]. In our case, a one-qubit gate can be designed on the basis of one qubit with the
excitation of the resonant transitions between the two eigenstates of the system using one of the
excitation techniques described above. ‘One qubit’ for QC can be defined as an element with
two quantum states—for example, s = 0 and s′ = 3 or s = 1 and s′ = 2. The eigenfunctions
|ζs〉 are factorized as is usual in the quantum information theory; for example: |ζ0〉 = |0〉 and
|ζ3〉 = |1〉.

Two-qubit gates are more complicated: they involve conditional evolution and thus require
some interaction between the qubits. The states of the two-qubit system can be factorized in
the following way: |ζ0〉 = |00〉, |ζ1〉 = |01〉, |ζ2〉 = |10〉, |ζ3〉 = |11〉. In NMR QC, any
operator acting in the (4 × 4)-dimensional space can be expressed as a linear combination
of the direct product of the two (2 × 2)-dimensional Hilbert spaces R ⊗ P [7]. In the case
considered, we can also present the basic vectors of the spin system in the form

|00〉 =



0
0
0
1


 =

(
0
1

)
R

⊗
(

0
1

)
P

, |01〉 =



0
0
1
0


 =

(
0
1

)
R

⊗
(

1
0

)
P

,

|10〉 =



0
1
0
0


 =

(
1
0

)
R

⊗
(

0
1

)
P

, |11〉 =



1
0
0
0


 =

(
1
0

)
R

⊗
(

1
0

)
P

.

(25)

Representation (25) allows one to use the virtual spin formalism [7, 19] and to apply the
algorithms developed for NMR QC.

Two-qubit gates, such as a C-NOT (controlled-NOT gate), are based on the following
condition: the evolution of one qubit has to depend on the state of the other qubit. The C-
NOT gate can be realized by using a selective pulse which excites the transitions between
states 2 and 3 and exchanges the populations on these levels. Pulse excitation of a
single resonance transition m → n can be described by a unitary operator Uφ(�mn) =
ei φ

2

∑
mn(δ�mn,�

e′
mn +δ�nm,�

e′
nm) [12] with nutation angle φ = γ htw and frequency �mn for the

transition m → n, where tw is the duration of the pulse of the additional field and operators
e′

mn are defined in the basis of eigenfunctions |ζs〉 of the effective Hamiltonian (11) with
s = 0, 1, 2, 3. At φ = π the unitary transformation becomes Uπ (�23) = i(e′

32 +e′
23 +e′

11 +e′
00)

which is just the C-NOT operation up to the additional phase factor i which has global character
and can be completely ignored [20]. The result of the action of the Uπ (�23) pulse on the states
follows from the representation (25): |00〉 → |00〉, |01〉 → |01〉, |11〉 → |10〉, |10〉 → |11〉.
Here the role of the control qubit is played by the states in the first Hilbert space R and the
target qubit is formed by the states in the second Hilbert space P . The computation time for
the two-qubit gates consists of duration of the pulse tw , which is of the order of 10 µs [17].

Another two-qubit gate can be realized using the level-crossing method [21]. For example,
for a SWAP logical gate[11] it is possible to change the difference of the phases of the applied
RF fields α1 − α2 from α1 − α2 < π

2 to π
2 < α1 − α2 < π (see figure 1), which leads

to |11〉 → |11〉, |10〉 → |01〉, |01〉 → |10〉, |00〉 → |00〉. A NOT2 logical gate [11] can
be realized by adiabatic variation of the difference of the phases of the applied RF fields
α1 − α2 from π

2 < α1 − α2 < π to π < α1 − α2 < 3π
2 (see figure 1), for which we
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have |11〉 → |10〉, |10〉 → |11〉, |01〉 → |00〉, |00〉 → |01〉. The first step of a quantum
computation is the preparation of a well-defined initial state of the system. The spin system
usually used, suitable for NMR and NQR measurements, should consist of O(1020) spins.
Pure states of such a large system can be realized only at very low temperatures of the order
of ∼0.1 K, which is a substantial technical problem. To overcome this problem, using an
effectively pure (a so-called a ‘pseudo-pure’) state [2, 3, 22], which is dynamically equivalent
to a pure state, was suggested. In our case, the ‘pseudo-pure’ state |00〉 can be created by
applying two selective pulses: Uπ/2(�23) and Uπ(�12) [9]. This pulse sequence leads to equal
populations of the states 1, 2, and 3, distinct from the population in the state 0.

5. Conclusions

We have shown that by the use of two RF fields with different phases and directions, the
degeneracy of the energy spectrum of a spin system with spin I = 3/2 is removed without
applying a DC magnetic field. The four non-degenerate quantum states obtained can be used
as a platform for a QC, which—as distinct from a QC based on NMR [1] and NQR [7]—
can be realized without a high external magnetic field and with full dynamical control of the
energy spitting. Various logic gates can be constructed by using different excitation techniques
allowing different manipulations of the spin system states. The computation time for the two-
qubit gates is of the order of 10 µs, which is faster than in NMR QC. Individual addressing of
qubits is provided by various conditions of the excitation, instead of distinctions in resonant
frequencies, which are usually used in NMR QC. The system considered allows one to apply
the level-crossing technique, which opens possibilities for creation of new algorithms. The
practical implementation of a pure NQR QC can be realized using solids containing, for
example, nuclei of 35Cl or 23Na with spin 3

2 . To increase the number of qubits, the nuclear
spin 7

2 can be used. By exciting the two resonance transitions between quadrupole energy levels
with a pair of radio-frequency fields differing in phase and direction, the double degeneracy
of the spin energy spectrum in an EFG is removed. This leads to eight states of the nuclear
spin which can be used as three qubits. The three-qubit system is useful for the realization of
some interesting algorithms—for example, the quantum Fourier transform [23]

The method described above is appropriate for a simple demonstration of QC with small
numbers of qubits. Unfortunately, there are several difficulties with increasing the number of
qubits [6]. For example, to produce four-qubit gates (without applying a high magnetic field),
some interaction between two nuclear spins with I = 3

2 is required, which leads to increase
in the computation time. Moreover, to implement quantum gates one needs to apply special
methods to suppress the interaction, which results in complication of the implementation of
algorithms. Note that at high temperature, the polarization and signal decrease exponentially
with the size of the spin system [6]. The most obvious ways to overcome these difficulties are
considered in [4, 6].
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